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ABSTRACT

This is a comprehensive study of active learning methods on real-
world graph datasets. Active Learning for interconnected data has
been studied over the years and has gained increasing importance
in recent times, especially due to its applications in tasks where
labeling is laborious and requires human experts, such as drug
discovery and protein-protein interaction prediction. In this work,
various active learning strategies are compared across 6 real-world
datasets from different domains for the task of node classification.
The main goal of this evaluation is to benchmark a range of active
learning strategies against state-of-the-art and identify the ones that
consistently perform well. We also propose a simple strategy for
selecting nodes for training the node classifier, and our experiments
show promising results of this strategy.
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1 INTRODUCTION

Active Learning is a sub-field of Machine Learning that is based on
the hypothesis that a model will perform better with less training if
it is allowed to choose the data to learn from [17]. Supervised learn-
ing is a popular technique used to train Machine Learning models
that are often deployed in multiple real-world applications. In su-
pervised classification problems, data instances with ground truth
labels are used for training a model that can predict the labels of
unseen data instances. Therefore, the performance of a supervised
learning models depends on the quality and quantity of training
data. While there exist a multitude of Machine Learning tasks where
labelled training instances can be easily obtained in hundreds and
thousands, for example the detection of spam e-mails, there are sev-
eral more sophisticated supervised learning tasks where labelling
is both expensive and done manually [17]. Active Learning tries
to overcome the bottleneck of labelling by choosing the most rele-
vant and informative samples for training. This is done by querying
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an oracle, such as a human or an annotator, for the labels of the
selected samples. The goal of the active learner is to maximise ac-
curacy using a budget of labeled instances, thus maintaining a fixed
annotation cost. Such a strategy can also prevent the leaner from
being overwhelmed with uninformative or redundant samples.

In recent times, graphs are being ubiquitously used for encoding
relational data and graph datasets have become extremely popular.
Learning effective representations of graphs has become critical in
many applications [6]. Graph Neural Networks have been exten-
sively employed in node classification [7, 18] and link prediction
[2, 21]. However they require a large amount of labelled data for
training [6]. This is where Active Learning, a promising strategy to
address this problem, comes into the picture.

2 MOTIVATION

Active Learning strategies are most useful when unlabelled data is
abundant and manual labelling is expensive. Some examples where
active learning methods are widely used include[17],

(1) The accurate labeling of speech utterances for speech clas-
sification as this requires trained linguists and is time con-
suming

(2) Detailed annotation of documents for information extraction
tasks which may require experts in various subjects

(3) Labeling of individual documents or media files in specific
fields for classification and filtering tasks

More specific to graphs and network data, the training instances
(nodes in the graph) are connected by links and their labels are
often correlated [9]. Thus, these links can be useful while selecting
the most informative samples. For example, nodes connected to
each other have a higher likelihood of having the same label than
unconnected nodes.

Some examples of cases where active learning on graphs is useful
include,

(1) predicting the effects of new substances on organisms in
biological networks[4]

(2) predicting effects of proteins on other biomolecules in molec-
ular networks[12]

(3) identifying a web of individuals involved in a criminal activ-
ity based on the evidence of their connections[15]

To summarize, the problem of active learning for interconnected
data is well motivated by multiple use cases, particularly when link
information is readily available and labeling is expensive and/or
requires human attention.

The main motivation of this study is to act as an easy-to-understand
guide for early researchers interested in Active Learning for graphs.
The advantages of this study may be narrowed down to the follow-

ing.



COMP 596 ’20, Nov 30, 2020, McGill, Montreal

Dataset Nodes | Classes | Features | Avg. Deg. | Avg. CC | Homophily
Citeseer 2110 6 3703 2.84 0.17 -0.077
PubMed 19,717 3 500 6.34 0.06 -0.043
Amazon Computers | 13,752 10 767 36.74 0.35 -0.056
Disease 1044 2 1000 2.0 0.0 -0.544
Wiki-CS 11,701 10 300 36.94 0.47 -0.092
PPI 8281 121 50 31.8 0.18 -0.046

Nair and Wen

Table 1: Summary of datasets. Disease dataset was obtained from https://github.com/HazyResearch/hgen. The Github
dataset was obtained from https://github.com/benedekrozemberczki/MUSAE. All the other datasets were taken from

Pytorch Geometric library.

(1) It provides insights on what kind of Active Learning strate-
gies are best suited for a given type of network dataset.

(2) Itestablishes baselines for quick comparisons with new meth-
ods.

(3) It estimates the optimal budget size for querying an oracle,
depending on the network type and Active Learning strategy.

3 RELATED WORK

All active learning strategies involve evaluating the informativeness
of unlabeled samples (either generated newly or sampled from a dis-
tribution) [17]. One of the most commonly used query framework
is uncertainty sampling[9] where the active learner queries the data
samples which is it most uncertain of how to label. Most general
uncertainty sampling strategies use entropy of label predictions as
a measure of uncertainty [17].

Many active learning algorithms employ a greedy strategy to
choose data samples that maximise a combination of the entropy
measure and some kind of graph property like the degree centrality
score, information density score or clustering co-efficient [1, 9].

Another class of active learning strategies that have come into
focus more recently include methods that pose this problem as one
of exploration versus exploitation, using a Reinforcement Learn-
ing approach. Fang et al.[5] use deep Q-networks to learn active
learning policies for the problem of named entity recognition. Liu
et al.[8] propose a solution for neural machine translation using
active learning based on reinforcement learning. While these meth-
ods were proposed for i.i.d data samples, Graph Policy Network
[6] was proposed for transferable active learning on graphs. This
work poses the problem as a Markov Decision Process and learns
an optimal query strategy using REINFORCE[19].

A more recent work, quite similar to this proposed project is
an evaluation of active learning methods for node classification[9].
Here, the performance of various active learning strategies (dis-
cussed above) are compared across multiple real-world datasets for
the task of node classification. While this serves as a good reference,
the present study differs from it by including active learning meth-
ods more specific to interconnected data for comparisons. They
also do not consider the more recent Reinforcement Learning based
approaches [6], which is studied in this work.

4 PROBLEM DEFINITION

The main goals of this project are to study the performance of vari-
ous existing active learning methods for different real-world graph
datasets for node classification tasks.

More specifically, this study attempts to answer the following
questions:

(1) How do various active learning strategies perform on differ-
ent graph datasets?

(2) Is there a strategy that consistently performs well/poorly,
and what is the possible reason?

Conducting this evaluation will help provide insights on what
kind of an approach makes most sense for graphs of a particular
nature. For example, Madhawa et. al [9] empirically show that
for graphs with higher level of clustering, sampling nodes with
highest clustering coefficients is a good strategy. This can also
provide strong baselines to compare against while developing new
methods.

5 DATASETS

In order to carry out an extensive study, the performance of all
the algorithms is compared on 6 real-world datasets from different
domains such as citation networks, product networks, co-author
networks, biological networks and social networks. This setup was
adopted from [9]. A summary of the 6 chosen datasets is in Table 1.

CiteSeer and PubMed[16] are commonly used citation graphs.
The nodes are documents and edge between two nodes indicate
that they have cited each other. The bag-of-words features of the
text content of a document are the node features.

Amazon Computers is a subgraph of the Amazon co-purchase
graph[10]. Products are represented as nodes, and two nodes are
connected if they are frequently bought together. Node attributes
are bag-of-words features of product reviews. The product category
is used as the node label.

The disease dataset[3] is a disease propagation network. The
label of a node indicates whether it is infected or not and the features
indicate the susceptibility to the disease.

The Wiki-CS dataset[11] has nodes as Wikipedia articles about
computer science. An edge exists between two nodes if one article
has a hyperlink to the other. GloVe word embeddings[14] of the
text content of an article is used as the feature vector of its node.

The protein—protein interaction (PPI) graph represents interac-
tions between proteins in human brains, blood, and kidneys[13, 22].
Protein properties are used as node attributes in a PPI graph.

6 METHODOLOGY

This work uses various active learning strategies for sampling train-
ing nodes to train an SGC node classifier. These strategies include
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random sampling, greedy strategies (optimizing a given objective),
graph embedding methods and reinforcement learning based mod-
els.

The training framework that involves active learning strategies
in our study includes the following parts:

(1) Use a sampling strategy for selecting informative nodes for
training a classifier model. The total number of nodes picked
is equal to the budget size provided. Node selection can
either be done in one pass (for strategies that only rely on
the graph), or iteratively as the classifier model is being
trained (for strategies that also depend on models’ output).

(2) Train a node classifier model using the above train set and
evaluate its performance on a held-out test set.

(3) Run the above experiment for a particular dataset using
different data splits and report the average AUPRC (area
under the precision recall curve) for different budget sizes.
The AUPRC metric is popularly used for evaluating classifier
performances on imbalanced test sets.

Each of the above 3 parts is varied to study their impact. Chang-
ing the sampling strategy helps identify the best Active Learning
method for a specific dataset. Varying the classifier model, e.g, GCN,
SGC, GAT compares the classification performance for different
node classifiers. Experimenting on different datasets provides in-
sights on the kind of graph properties to consider while choosing
Active Learning strategies. For the scope of this work, the sampling
strategies and datasets are varied while using a single, powerful
node classifier model.

Given a fixed budget (k), we compare the following sampling
methods. Methods 1-4 are treated as baselines, method 5 is a new
strategy that we propose and methods 6-7 are state-of-the-art Active
Learning algorithms.

(1) Random: We sample k nodes uniformly at random from the
train set.

(2) Entropy: After each time the classifier weight is updated,
calculate the entropy (uncertainty) of the predictions made
by the current model over the unlabelled nodes (from the
train set) and choose the node which maximizes the entropy
iteratively till budget is reached

(3) Clustering coefficient: We sample the top k nodes that
have maximum clustering coefficient from all the training
nodes in the graph.

(4) Degree: Pick the top k nodes that have maximum degree
centrality measures from among all the training nodes in the
graph. This serves as a baseline to the following strategy.

(5) Clustering+Degree: In this strategy, we cluster the graph
and sample the node with highest degree in the subgraph
obtained by the nodes of each cluster. More specifically, we
sort the clusters by their sizes from the largest to the smallest,
and within each cluster we sort the nodes by their degrees
from the highest to the lowest. Then we iteratively sample
one node in each cluster, in the order given above, until the
budget is met. The graph clusters provide groups of closely
related nodes and picking the node with the highest degree
within a cluster, gives the most informative node within
a group of similar nodes. Sampling from each cluster thus
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provides a good sample of informative nodes from the entire

graph.

AGE [1]: After each time the classifier weight is updated,

compute each node’s PageRank score, its distance to the

closest k-means cluster center, and its prediction entropy,
and select the node which maximizes a linear combination of
the quantiles of these three quantities. The linear weights can
be either uniform, i.e. 1/3 for each quantile, which we denote
as static AGE, or varies as the training proceeds, which we
denote as adaptive AGE. Detailed discussions on the linear

weights are in Appendix B.

(7) GPA [6]: Graph Policy network for transferable Active Learn-
ing, learns a transferable policy of selecting nodes for train-
ing a GNN node classifier. It treats the problem as a sequential
decision process on graphs and trains another GNN model,
which acts as the policy network, with reinforcement learn-
ing to learn the optimal query strategy. At each time-step, the
graph state is a matrix of node state representations which is
a concatenation of node properties. These properties include
degree, entropy of the label distribution predicted by a clas-
sification GNN, the divergence between a node’s predicted
label distribution and its neighbouring nodes’. The action is
to select a node for querying and the reward is the classifi-
cation GNN’s performance on the validation set. We refer
the reader to [6] for more details on the implementation.

—~
=)
=

7 EXPERIMENT SETUP

We run node classification experiments! on the 6 datasets men-
tioned in Table 1. We use the SGC graph neural network model
[20] for our experiments on node classification. SGC is a simplified
GNN architecture that does not include a hidden layer and nonlin-
ear activations which has been shown to give better results over
GCN [20]. We tune the hyperparameters for each dataset with the
random sampling strategy and a budget of 50.

For each of the datasets, we split them into train, validation
and test sets. We then experiment with various Active Learning
strategies of sampling nodes from the train set and use the sampled
nodes for training the SGC model. We report the AUPRC of the
model on the test set as an average over 5 runs using different
seeds for both splitting the data and initializing the SGC model
parameters. For these experiments the train-test-validation split is
60% — 20% — 20%.

In the GPA paper, the authors use GCN instead of SGC, and they
evaluate in terms of F1 scores instead of AUPRC. Furthermore, GPA
evaluates only on a subset of our datasets, and they use different
data splits than ours. Therefore, to ensure a fair comparison, we
conducted further experiments to mimic GPA’s setup, by using the
same validation and test sizes, using GCN in addition to SGC, and
evaluating with F1 scores.

8 RESULTS AND DISCUSSION

The comparison of the performance of the all the Active Learning
strategies mentioned Section 6, except GPA, is shown in Figure 1.
We see that on all datasets except Amazon, the proposed strategy

10ur code is available at https://github.com/nair-p/AL4G
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Figure 1: AUPRC on different datasets. The title of the plots indicate the dataset. “Upper bound” indicates the results obtained
by training on the entire train set (vanilla semi-supervised setting).

(Clustering + Degree) either outperforms or performs as well as
the other methods.

For both Citeseer and Pubmed, Clustering + Degree sampling
works best for all budget sizes. Entropy sampling performs the
worst. We hypothesize that the graph clusters loosely separate
the nodes by their classes, and sampling from each of the clusters
encourages the train set to contain at least one sample from each
class. Moreover, choosing the node with the highest degree from
within the cluster works well probably because majority of the

nodes connected to this node are likely to have the same label (due
to homophily).

For Amazon, noting that it has a very high average degree as-
sortativity (see Table 1), i.e a high degree node is very likely to
connect with other high degree nodes, picking the highest degree
nodes from clusters may result in losing out on important, con-
nected nodes. We suspect this might be the reason that the proposed
method (Clustering+Degree) performs poorly on this dataset.
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Table 2: Mean F1 scores of active learning algorithms on
Pubmed and Citeseer. Highest score in each column is in
bold.

Algorithms Pubmed Citeseer
Micro-f1 Macro-f1 | Micro-f1  Macro-f1
Random 0.53 0.41 0.66 0.65
Clustering Coeft. 0.51 0.43 0.61 0.55
Clustering+Deg 0.49 0.32 0.72 0.71
Entropy 0.42 0.24 0.45 0.41
Degree 0.57 0.42 0.51 0.42
AGE (static) 0.42 0.22 0.52 0.49
AGE (adaptive) 0.41 0.26 0.42 0.35
GPA (in paper) 0.78 0.76 0.66 0.57

Furthermore, comparison with GPA is shown in Table 2. Each
score is the highest of the scores received by GCN and SGC in the
given setting, and the full results that include both GCN and SGC
are shown in Table 3. First, we observe that, despite our efforts
to replicate GPA’s evaluation scheme, our random baseline per-
forms worse on Pubmed compared to what is reported in the GPA
paper, whereas on Citeseer our random baseline performs better.
We suspect this is due to different GCN implementations or data
processing steps.

Second, we observe that on Citeseer, Clustering + Degree out-
performs GPA’s reported performance substantially, in terms of
both micro-f1 score and macro-f1 score. Even considering the con-
founding fluctuations as indicated by the discrepancy in the random
baseline, it is still very likely that Clustering + Degree is similar
to, if not better than, GPA on Citeseer, if under the exact same
evaluation scheme. This is remarkable especially considering that
Clustering + Degree is a static, parameter-free sampling strategy, as
opposed to GPA which employs an RL agent that is trained on two
other datasets. While our experiments do not provide conclusive
results, we believe they definitely warrant further study of using
Clustering + Degree.

9 CONCLUSION AND FUTURE WORK

This paper is a study on active learning methods for graphs and it
compared the performance of 7 different Active Learning strategies
on 6 real-world network datasets. One of our contributions is we
provide a benchmark for common active learning strategies on
the task of node classification, which serves to provide compari-
son for future active learning strategies. We also propose a new
active learning strategy that favors the highly connected nodes
in graph clusters. Our experiments show promising results of this
new method, which outperforms or is at par with other popularly
used strategies, including state-of-the-art methods, such as entropy,
AGE and GPA.
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Table 3: Mean F1 scores of active learning algorithms on Pubmed and Citeseer. Highest score in each column is in bold. GPA
results are from their paper[6]. The X indicates that the method was not implemented using that model, i.e GPA was not tested

using an SGC classifier model in [6]

Pubmed Citeseer
Algorithms Micro-f1 Macro-f1 Micro-f1 Macro-f1

SGC GCN | SGC GCN | SGC GCN | SGC GCN
Random 041 053 | 0.23 041 | 0.66 0.50 | 0.65 0.43
Clustering Coeff. | 043 051 | 031 044 | 061 052 | 0.56 0.43
Clustering+Deg 049 045 | 032 030 | 0.72 044 | 0.71 0.37
Entropy 042 043 | 024 0.28 | 046 0.44 | 041 0.35
Degree 0.57 052 | 042 036 | 046 052 | 042 042
AGE (static) 038 042 | 021 0.22 | 0.53 0.38 | 0.50 0.29
AGE (adaptive) 040 042 | 019 0.26 | 043 039 | 035 0.29
GPA (in paper) X 0.78 X 0.76 X 0.66 X 0.57

A ADDITIONAL RESULTS

Additional results on comparison with GPA, including both SGC
and GCN models, are shown in Table 3.

B AGE LINEAR WEIGHTS

We found that the linear weights calculation in the original AGE
paper [1] is different from the actual implementation. Specifically,
in the paper, the weight for the PageRank quantile, y;, is drawn from
a Beta distribution y; ~ Beta(1, n;), while the other two weights
are drawn from Beta(1,n}), where n; and n; are two undefined
variables that increase and decrease as the number of iterations
increases, respectively. And finally, the weights are normalized to
sum to 1.

However, after examining the code released by the authors?,
we found that y; is drawn from Beta(1,1.005 — c?), where c is a

dataset-specific hyperparameter and t is the number of iterations,
and a; and fr are determined by (1 —y;)/2.

Therefore, because of this inconsistency in the paper and in the
actual implementation, and of our decision to use SGC in addition
to GCN, we decided to follow the spirit of the original paper and
design our own weight computation adaptation.

The spirit is that the quantities that depend on the model, i.e.
entropy and k-means distances, should have small weights at first,
and have larger weights as the model is being trained. As a result,
if the classifier is GCN, as is in the AGE paper, both a and f should
increase, and thus we calculate them as a; = ff; = t/150, since the
largest budget in our experiments is 50. Similarly, if the classifier
is SGC, only « is increased, since the node embeddings are not
updated in SGC, and « is calculated as a; = ¢/150. Finally, f; =
ye=1-ar)/2
Zhttps://github.com/vwz/AGE
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